1

Section 3.3 Graphing Sine Cosine and Tangent Functions

1. Graph the following function for $-2\pi \le \theta \le 2\pi$. Indicate the Period, Amplitude, Domain, and Range:

2. Indicate the general formula for the vertical asymptotes of $y = \tan x$

3. When the graph of $y = \sin x$ and $y = \cos x$ are drawn on the same graph for $0 < x < 2\pi$ in which quadrants do they intersect? What are the coordinates of the points of intersection?

4. Given that $\sin \theta > 0$ and $\cos \theta < 0$, what is the range of possible values of θ if $0 < \theta < 2\pi$?

5. Indicate TRUE or FALSE: $\sin\theta>0$ and $\cos\theta>0$, then $\tan\theta$ can be either positive or negative.

6. Given each of the following trigonometric graphs, indicate the amplitude and period

- 7. If How do the intersections of $y = \sin x$ and $y = \cos x$ relate with the graph of $y = \tan x$?
- 8. How many units should the graph of $y = \sin x$ be shifted horizontally so that it will overlap the graph of $y = \cos x$?
- 9. When the graph of $y = \sin x$ and y = 0.5 are drawn on the same graph for $0 < x < 2\pi$ in which quadrants do they intersect? What are the coordinates of the points of intersection?
- 10. What is the amplitude and period of the graph $y = A \sin(Bx)$ if A = -3 and B = 2?
- 11. Given that the terminal arm intersects the unit circle at coordinates (a,b), what is the reference angle and the angle in standard position?

- 12. If point "P" is on the unit circle with coordinates defined by $(\sin \theta, \cos \theta)$, what is θ in standard position?
- 13. Given the identity $\sin 2a = 2\sin a \times \cos a$, what is the value of $\sin 2d$ if $\cos d = \frac{3}{4}$ and "d" is in quadrant 1? Find the exact value.
- 14. If $\cos \theta = \frac{a^2 b^2}{a^2 + b^2}$ and $0^\circ \le \theta \le 90^\circ$, find the value of $\sin \theta$:

- a) $\frac{2ab}{a^2+b^2}$ b) $\frac{4ab}{a^2+b^2}$ c) $\frac{2a^2b^2}{a^2+b^2}$ d) $\frac{4a^2b^2}{a^2+b^2}$ e) $\frac{a^2b^2}{2a^2+2b^2}$
 - 15. If $0^{\circ} \le \theta \le 180^{\circ}$ and $\sin \theta \ge \cos \theta$, then:

- a) $0 \le \theta \le 45^{\circ}$ b) $45^{\circ} \le \theta \le 90^{\circ}$ c) $45^{\circ} \le \theta \le 180^{\circ}$ d) $90^{\circ} \le \theta \le 180^{\circ}$ e) $0 \le \theta \le 90^{\circ}$

- 16. $\cos(270^{\circ} \theta) =$
- a) $-\cos\theta$ b) $\cos\theta$ c) $-\sin\theta$
- d) $\sin \theta$
- e) $\sin\theta\cos\theta$

- 17. If $\sin 2a < 0$, $\cos a \sin a < 0$, which quadrant is angle a in?
- a) I

b) II

- c) III
- d) IV
- 18. In $\triangle ABC$, $2\cos B\cos A = \sin C$. What kind of shape is the triangle?
- a) Right triangle
- b) Equilateral triangle c) 45-45-90 triangle
- d) Isosceles triangle

19. $0 < \beta < 2\pi$ what does β need to be in order for $\sin \beta > \cos \beta$ to be true?

A.
$$\frac{\pi}{4} < \beta < \frac{\pi}{2}$$
 and $\pi < \beta < \frac{5}{4}\pi$

B.
$$\frac{\pi}{4} < \beta < \pi$$

C.
$$\frac{\pi}{4} < \beta < \frac{5}{4}\pi$$

D.
$$\frac{\pi}{4} < \beta < \pi \text{ and } \frac{5}{4}\pi < \beta < \frac{3}{2}\pi$$

20. Angle A, B are both acute angles. Point P has coordinates (cosB-sinA, sinB-cosA) Which quadrant is point P in?

- a) I
- b) II

- c) III
- d) IV

21. $\sin\alpha > \sin\beta$ Which of the following is true?

- a) If α,β are in the quadrant I, then $\cos\alpha > \cos\beta a$
- b) If α,β are in the quadrant II, then $\tan\alpha > \tan\beta$
- c) If α,β are in the quadrant III, then $\cos\alpha > \cos\beta$
- d) If α,β are in the quadrant IV, then $\tan\alpha > \tan\beta$

22. A rectangle PQRS has side PQ on the x-axis and touches the graph of $y=k\cos(x)$ at the point "S" and "R" as shown. If the length of PQ is $\frac{\pi}{3}$ and the area of the rectangle is $\frac{5\pi}{3}$, what is the value of "k"?

